(PECL svm >= 0.1.0)
SVM::C_SVC
      The basic C_SVC SVM type. The default, and a good starting point
SVM::NU_SVC
      The NU_SVC type uses a different, more flexible, error weighting
SVM::ONE_CLASS
      One class SVM type. Train just on a single class, using outliers as negative examples
SVM::EPSILON_SVR
      A SVM type for regression (predicting a value rather than just a class)
SVM::NU_SVR
      A NU style SVM regression type
SVM::KERNEL_LINEAR
      A very simple kernel, can work well on large document classification problems
SVM::KERNEL_POLY
      A polynomial kernel
SVM::KERNEL_RBF
      The common Gaussian RBD kernel. Handles non-linear problems well and is a good default for classification
SVM::KERNEL_SIGMOID
      A kernel based on the sigmoid function. Using this makes the SVM very similar to a two layer sigmoid based neural network
SVM::KERNEL_PRECOMPUTED
      A precomputed kernel - currently unsupported.
SVM::OPT_TYPE
      The options key for the SVM type
SVM::OPT_KERNEL_TYPE
      The options key for the kernel type
SVM::OPT_DEGREE
      SVM::OPT_SHRINKING
      Training parameter, boolean, for whether to use the shrinking heuristics
SVM::OPT_PROBABILITY
      Training parameter, boolean, for whether to collect and use probability estimates
SVM::OPT_GAMMA
      Algorithm parameter for Poly, RBF and Sigmoid kernel types.
SVM::OPT_NU
      The option key for the nu parameter, only used in the NU_ SVM types
SVM::OPT_EPS
      The option key for the Epsilon parameter, used in epsilon regression
SVM::OPT_P
      Training parameter used by Episilon SVR regression
SVM::OPT_COEF_ZERO
      Algorithm parameter for poly and sigmoid kernels
SVM::OPT_C
      The option for the cost parameter that controls tradeoff between errors and generality - effectively the penalty for misclassifying training examples.
SVM::OPT_CACHE_SIZE
      Memory cache size, in MB