dis --- Python 字节码反汇编器P

Source code: Lib/dis.py


dis 模块通过反汇编支持CPython的 bytecode 分析。该模块作为输入的 CPython 字节码在文件 Include/opcode.h 中定义,并由编译器和解释器使用。

CPython implementation detail: 字节码是 CPython 解释器的实现细节。不保证不会在Python版本之间添加、删除或更改字节码。不应考虑将此模块的跨 Python VM 或 Python 版本的使用。

在 3.6 版更改: 每条指令使用2个字节。以前字节数因指令而异。

示例:给出函数 myfunc():

def myfunc(alist):
    return len(alist)

可以使用以下命令显示 myfunc() 的反汇编

>>> dis.dis(myfunc)
  2           0 LOAD_GLOBAL              0 (len)
              2 LOAD_FAST                0 (alist)
              4 CALL_FUNCTION            1
              6 RETURN_VALUE

("2" 是行号)。

字节码分析P

3.4 新版功能.

字节码分析 API 允许将 Python 代码片段包装在 Bytecode 对象中,以便轻松访问已编译代码的详细信息。

class dis.Bytecode(x, *, first_line=None, current_offset=None)P

分析的字节码对应于函数、生成器、异步生成器、协程、方法、源代码字符串或代码对象(由 compile() 返回)。

这是下面列出的许多函数的便利包装,最值得注意的是 get_instructions() ,迭代于 Bytecode 的实例产生字节码操作 Instruction 的实例。

如果 first_line 不是 None ,则表示应该为反汇编代码中的第一个源代码行报告的行号。否则,源行信息(如果有的话)直接来自反汇编的代码对象。

如果 current_offset 不是 None ,则它指的是反汇编代码中的指令偏移量。设置它意味着 dis() 将针对指定的操作码显示“当前指令”标记。

classmethod from_traceback(tb)P

从给定回溯构造一个 Bytecode 实例,将设置 current_offset 为异常负责的指令。

codeobjP

已编译的代码对象。

first_lineP

代码对象的第一个源代码行(如果可用)

dis()P

返回字节码操作的格式化视图(与 dis.dis() 打印相同,但作为多行字符串返回)。

info()P

返回带有关于代码对象的详细信息的格式化多行字符串,如 code_info()

在 3.7 版更改: 现在可以处理协程和异步生成器对象。

示例:

>>> bytecode = dis.Bytecode(myfunc)
>>> for instr in bytecode:
...     print(instr.opname)
...
LOAD_GLOBAL
LOAD_FAST
CALL_FUNCTION
RETURN_VALUE

分析函数P

dis 模块还定义了以下分析函数,它们将输入直接转换为所需的输出。如果只执行单个操作,它们可能很有用,因此中间分析对象没用:

dis.code_info(x)P

返回格式化的多行字符串,其包含详细代码对象信息的用于被提供的函数、生成器、异步生成器、协程、方法、源代码字符串或代码对象。

请注意,代码信息字符串的确切内容是高度依赖于实现的,它们可能会在Python VM或Python版本中任意更改。

3.2 新版功能.

在 3.7 版更改: 现在可以处理协程和异步生成器对象。

dis.show_code(x, *, file=None)P

将提供的函数、方法。源代码字符串或代码对象的详细代码对象信息打印到 file (如果未指定 file ,则为 sys.stdout )。

这是 print(code_info(x), file=file) 的便捷简写,用于在解释器提示符下进行交互式探索。

3.2 新版功能.

在 3.4 版更改: 添加 file 形参。

dis.dis(x=None, *, file=None, depth=None)P

反汇编 x 对象。 x 可以表示模块、类、方法、函数、生成器、异步生成器、协程、代码对象、源代码字符串或原始字节码的字节序列。对于模块,它会反汇编所有功能。对于一个类,它反汇编所有方法(包括类和静态方法)。对于代码对象或原始字节码序列,它每字节码指令打印一行。它还递归地反汇编嵌套代码对象(推导式代码,生成器表达式和嵌套函数,以及用于构建嵌套类的代码)。在被反汇编之前,首先使用 compile() 内置函数将字符串编译为代码对象。如果未提供任何对象,则此函数会反汇编最后一次回溯。

如果提供的话,反汇编将作为文本写入提供的 file 参数,否则写入 sys.stdout

递归的最大深度受 depth 限制,除非它是 Nonedepth=0 表示没有递归。

在 3.4 版更改: 添加 file 形参。

在 3.7 版更改: 实现了递归反汇编并添加了 depth 参数。

在 3.7 版更改: 现在可以处理协程和异步生成器对象。

dis.distb(tb=None, *, file=None)P

如果没有传递,则使用最后一个回溯来反汇编回溯的堆栈顶部函数。 指示了导致异常的指令。

如果提供的话,反汇编将作为文本写入提供的 file 参数,否则写入 sys.stdout

在 3.4 版更改: 添加 file 形参。

dis.disassemble(code, lasti=-1, *, file=None)P
dis.disco(code, lasti=-1, *, file=None)P

反汇编代码对象,如果提供了 lasti ,则指示最后一条指令。输出分为以下几列:

  1. 行号,用于每行的第一条指令

  2. 当前指令,表示为 -->

  3. 一个标记的指令,用 >> 表示,

  4. 指令的地址,

  5. 操作码名称,

  6. 操作参数,和

  7. 括号中参数的解释。

参数解释识别本地和全局变量名称、常量值、分支目标和比较运算符。

如果提供的话,反汇编将作为文本写入提供的 file 参数,否则写入 sys.stdout

在 3.4 版更改: 添加 file 形参。

dis.get_instructions(x, *, first_line=None)P

在所提供的函数、方法、源代码字符串或代码对象中的指令上返回一个迭代器。

迭代器生成一系列 Instruction ,命名为元组,提供所提供代码中每个操作的详细信息。

如果 first_line 不是 None ,则表示应该为反汇编代码中的第一个源代码行报告的行号。否则,源行信息(如果有的话)直接来自反汇编的代码对象。

3.4 新版功能.

dis.findlinestarts(code)P

此生成器函数使用代码对象 codeco_firstlinenoco_lnotab 属性来查找源代码中行开头的偏移量。它们生成为 (offset, lineno) 对。请参阅 objects/lnotab_notes.txt ,了解 co_lnotab 格式以及如何解码它。

在 3.6 版更改: 行号可能会减少。 以前,他们总是在增加。

dis.findlabels(code)P

检测作为跳转目标的代码对象 code 中的所有偏移量,并返回这些偏移量的列表。

dis.stack_effect(opcode, oparg=None, *, jump=None)P

使用参数 oparg 计算 opcode 的堆栈效果。

如果代码有一个跳转目标并且 jumpTrue ,则 drag_effect() 将返回跳转的堆栈效果。如果 jumpFalse ,它将返回不跳跃的堆栈效果。如果 jumpNone (默认值),它将返回两种情况的最大堆栈效果。

3.4 新版功能.

在 3.8 版更改: 添加 jump 参数。

Python字节码说明P

get_instructions() 函数和 Bytecode 类提供字节码指令的详细信息的 Instruction 实例:

class dis.InstructionP

字节码操作的详细信息

opcodeP

操作的数字代码,对应于下面列出的操作码值和 操作码集合 中的字节码值。

opnameP

人类可读的操作名称

argP

操作的数字参数(如果有的话),否则为 None

argvalP

已解析的 arg 值(如果已知),否则与 arg 相同

argreprP

人类可读的操作参数描述

offsetP

在字节码序列中启动操作索引

starts_lineP

行由此操作码(如果有)启动,否则为 None

is_jump_targetP

如果其他代码跳到这里,则为 True ,否则为 False

3.4 新版功能.

Python编译器当前生成以下字节码指令。

一般指令

NOPP

什么都不做。 用作字节码优化器的占位符。

POP_TOPP

删除堆栈顶部(TOS)项。

ROT_TWOP

交换两个最顶层的堆栈项。

ROT_THREEP

将第二个和第三个堆栈项向上提升一个位置,顶项移动到位置三。

ROT_FOURP

将第二个,第三个和第四个堆栈项向上提升一个位置,将顶项移动到第四个位置。

3.8 新版功能.

DUP_TOPP

复制堆栈顶部的引用。

3.2 新版功能.

DUP_TOP_TWOP

复制堆栈顶部的两个引用,使它们保持相同的顺序。

3.2 新版功能.

一元操作

一元操作获取堆栈顶部元素,应用操作,并将结果推回堆栈。

UNARY_POSITIVEP

实现 TOS = +TOS

UNARY_NEGATIVEP

实现 TOS = -TOS

UNARY_NOTP

实现 TOS = not TOS

UNARY_INVERTP

实现 TOS = ~TOS

GET_ITERP

实现 TOS = iter(TOS)

GET_YIELD_FROM_ITERP

如果 TOS 是一个 generator iteratorcoroutine 对象则保持原样。否则实现 TOS = iter(TOS)

3.5 新版功能.

二元操作

二元操作从堆栈中删除堆栈顶部(TOS)和第二个最顶层堆栈项(TOS1)。 它们执行操作,并将结果放回堆栈。

BINARY_POWERP

实现 TOS = TOS1 ** TOS

BINARY_MULTIPLYP

实现 TOS = TOS1 * TOS

BINARY_MATRIX_MULTIPLYP

实现 TOS = TOS1 @ TOS

3.5 新版功能.

BINARY_FLOOR_DIVIDEP

实现 TOS = TOS1 // TOS

BINARY_TRUE_DIVIDEP

实现 TOS = TOS1 / TOS

BINARY_MODULOP

实现 TOS = TOS1 % TOS

BINARY_ADDP

实现 TOS = TOS1 + TOS

BINARY_SUBTRACTP

实现 TOS = TOS1 - TOS

BINARY_SUBSCRP

实现 TOS = TOS1[TOS]

BINARY_LSHIFTP

实现 TOS = TOS1 << TOS

BINARY_RSHIFTP

实现 TOS = TOS1 >> TOS

BINARY_ANDP

实现 TOS = TOS1 & TOS

BINARY_XORP

实现 TOS = TOS1 ^ TOS

BINARY_ORP

实现 TOS = TOS1 | TOS

就地操作

就地操作就像二元操作,因为它们删除了TOS和TOS1,并将结果推回到堆栈上,但是当TOS1支持它时,操作就地完成,并且产生的TOS可能是(但不一定) 原来的TOS1。

INPLACE_POWERP

就地实现 TOS = TOS1 ** TOS

INPLACE_MULTIPLYP

就地实现 TOS = TOS1 * TOS

INPLACE_MATRIX_MULTIPLYP

就地实现 TOS = TOS1 @ TOS

3.5 新版功能.

INPLACE_FLOOR_DIVIDEP

就地实现 TOS = TOS1 // TOS

INPLACE_TRUE_DIVIDEP

就地实现 TOS = TOS1 / TOS

INPLACE_MODULOP

就地实现 TOS = TOS1 % TOS

INPLACE_ADDP

就地实现 TOS = TOS1 + TOS

INPLACE_SUBTRACTP

就地实现 TOS = TOS1 - TOS

INPLACE_LSHIFTP

就地实现 TOS = TOS1 << TOS

INPLACE_RSHIFTP

就地实现 TOS = TOS1 >> TOS

INPLACE_ANDP

就地实现 TOS = TOS1 & TOS

INPLACE_XORP

就地实现 TOS = TOS1 ^ TOS

INPLACE_ORP

就地实现 TOS = TOS1 | TOS

STORE_SUBSCRP

实现 TOS1[TOS] = TOS2

DELETE_SUBSCRP

实现 del TOS1[TOS]

协程操作码

GET_AWAITABLEP

实现 TOS = get_awaitable(TOS) ,其中 get_awaitable(o) 返回 o 如果 o 是一个有 CO_ITERABLE_COROUTINE 标志的协程对象或生成器对象,否则解析 o.__await__

3.5 新版功能.

GET_AITERP

实现 TOS = TOS.__aiter__()

3.5 新版功能.

在 3.7 版更改: 已经不再支持从 __aiter__ 返回可等待对象。

GET_ANEXTP

实现 PUSH(get_awaitable(TOS.__anext__())) 。参见 GET_AWAITABLE 获取更多 get_awaitable 的细节

3.5 新版功能.

END_ASYNC_FORP

终止一个 async for 循环。处理等待下一个项目时引发的异常。如果 TOS 是 StopAsyncIteration, 从堆栈弹出7个值,并使用后三个恢复异常状态。否则,使用堆栈中的三个值重新引发异常。从块堆栈中删除异常处理程序块。

3.8 新版功能.

BEFORE_ASYNC_WITHP

从栈顶对象解析 __aenter____aexit__ 。将 __aexit____aenter__() 的结果推入堆栈。

3.5 新版功能.

SETUP_ASYNC_WITHP

创建一个新的帧对象。

3.5 新版功能.

其他操作码

PRINT_EXPRP

实现交互模式的表达式语句。TOS从堆栈中被移除并打印。在非交互模式下,表达式语句以 POP_TOP 终止。

SET_ADD(i)P

调用 set.add(TOS1[-i], TOS) 。 用于实现集合推导。

LIST_APPEND(i)P

调用 list.append(TOS[-i], TOS) 。 用于实现列表推导。

MAP_ADD(i)P

调用 dict.__setitem__(TOS1[-i], TOS1, TOS) 。 用于实现字典推导。

3.1 新版功能.

在 3.8 版更改: 映射值为 TOS ,映射键为 TOS1 。之前,它们被颠倒了。

对于所有 SET_ADDLIST_APPENDMAP_ADD 指令,当弹出添加的值或键值对时,容器对象保留在堆栈上,以便它可用于循环的进一步迭代。

RETURN_VALUEP

返回 TOS 到函数的调用者。

YIELD_VALUEP

弹出 TOS 并从一个 generator 生成它。

YIELD_FROMP

弹出 TOS 并将其委托给它作为 generator 的子迭代器。

3.3 新版功能.

SETUP_ANNOTATIONSP

检查 __annotations__ 是否在 locals() 中定义,如果没有,它被设置为空 dict 。只有在类或模块体静态地包含 variable annotations 时才会发出此操作码。

3.6 新版功能.

IMPORT_STARP

将所有不以 '_' 开头的符号直接从模块 TOS 加载到局部命名空间。加载所有名称后弹出该模块。这个操作码实现了 from module import *

POP_BLOCKP

从块堆栈中删除一个块。有一块堆栈,每帧用于表示 try 语句等。

POP_EXCEPTP

从块堆栈中删除一个块。 弹出的块必须是异常处理程序块,在进入 except 处理程序时隐式创建。除了从帧堆栈弹出无关值之外,最后三个弹出值还用于恢复异常状态。

RERAISEP

Re-raises the exception currently on top of the stack.

3.9 新版功能.

WITH_EXCEPT_STARTP

Calls the function in position 7 on the stack with the top three items on the stack as arguments. Used to implement the call context_manager.__exit__(*exc_info()) when an exception has occurred in a with statement.

3.9 新版功能.

LOAD_ASSERTION_ERRORP

Pushes AssertionError onto the stack. Used by the assert statement.

3.9 新版功能.

LOAD_BUILD_CLASSP

builtins .__ build_class__() 推到堆栈上。它之后被 CALL_FUNCTION 调用来构造一个类。

SETUP_WITH(delta)P

此操作码在 with 块开始之前执行多个操作。首先,它从上下文管理器加载 __exit__() 并将其推入到堆栈以供以后被 WITH_CLEANUP_START 使用。然后,调用 __enter__() ,并推入指向 delta 的 finally 块。最后,调用 __enter__() 方法的结果被压入堆栈。一个操作码将忽略它( POP_TOP ),或将其存储在一个或多个变量( STORE_FASTSTORE_NAMEUNPACK_SEQUENCE )中。

3.2 新版功能.

以下所有操作码均使用其参数。

STORE_NAME(namei)P

实现 name = TOSnameiname 在代码对象的 co_names 属性中的索引。 在可能的情况下,编译器会尝试使用 STORE_FASTSTORE_GLOBAL

DELETE_NAME(namei)P

实现 del name ,其中 namei 是代码对象的 co_names 属性的索引。

UNPACK_SEQUENCE(count)P

将 TOS 解包为 count 个单独的值,它们将按从右至左的顺序被放入堆栈。

UNPACK_EX(counts)P

实现使用带星号的目标进行赋值:将 TOS 中的可迭代对象解包为单独的值,其中值的总数可以小于可迭代对象中的项数:新值之一将是由所有剩余项构成的列表。

counts 的低字节是列表值之前的值的数量,counts 中的高字节则是之后的值的数量。 结果值会按从右至左的顺序入栈。

STORE_ATTR(namei)P

实现 TOS.name = TOS1,其中 namei 是 name 在 co_names 中的索引号。

DELETE_ATTR(namei)P

实现 del TOS.name,使用 namei 作为 co_names 中的索引号。

STORE_GLOBAL(namei)P

类似于 STORE_NAME 但会将 name 存储为全局变量。

DELETE_GLOBAL(namei)P

类似于 DELETE_NAME 但会删除一个全局变量。

LOAD_CONST(consti)P

co_consts[consti] 推入栈顶。

LOAD_NAME(namei)P

将与 co_names[namei] 相关联的值推入栈顶。

BUILD_TUPLE(count)P

创建一个使用了来自栈的 count 个项的元组,并将结果元组推入栈顶。

BUILD_LIST(count)P

类似于 BUILD_TUPLE 但会创建一个列表。

BUILD_SET(count)P

类似于 BUILD_TUPLE 但会创建一个集合。

BUILD_MAP(count)P

将一个新字典对象推入栈顶。 弹出 2 * count 项使得字典包含 count 个条目: {..., TOS3: TOS2, TOS1: TOS}

在 3.5 版更改: 字典是根据栈中的项创建而不是创建一个预设大小包含 count 项的空字典。

BUILD_CONST_KEY_MAP(count)P

专用于常量键的 BUILD_MAP 版本。 count 值是从栈中提取的。 栈顶的元素包含一个由键构成的元组。

3.6 新版功能.

BUILD_STRING(count)P

拼接 count 个来自栈的字符串并将结果字符串推入栈顶。

3.6 新版功能.

BUILD_TUPLE_UNPACK(count)P

从栈中弹出 count 个可迭代对象,将它们合并为单个元组,并将结果推入栈顶。 实现可迭代对象解包为元组形式 (*x, *y, *z)

3.5 新版功能.

BUILD_TUPLE_UNPACK_WITH_CALL(count)P

这类似于 BUILD_TUPLE_UNPACK 但专用于 f(*x, *y, *z) 调用语法。 栈中 count + 1 位置上的项应当是相应的可调用对象 f

3.6 新版功能.

BUILD_LIST_UNPACK(count)P

这类似于 BUILD_TUPLE_UNPACK 但会将一个列表而非元组推入栈顶。 实现可迭代对象解包为列表形式 [*x, *y, *z]

3.5 新版功能.

BUILD_SET_UNPACK(count)P

这类似于 BUILD_TUPLE_UNPACK 但会将一个集合而非元组推入栈顶。 实现可迭代对象解包为集合形式 {*x, *y, *z}

3.5 新版功能.

BUILD_MAP_UNPACK(count)P

从栈中弹出 count 个映射对象,将它们合并为单个字典,并将结果推入栈顶。 实现字典解包为字典形式 {**x, **y, **z}

3.5 新版功能.

BUILD_MAP_UNPACK_WITH_CALL(count)P

这类似于 BUILD_MAP_UNPACK 但专用于 f(**x, **y, **z) 调用语法。 栈中 count + 2 位置上的项应当是相应的可调用对象 f

3.5 新版功能.

在 3.6 版更改: 可迭代对象的位置的确定方式是将操作码参数加 2 而不是将其编码到参数的第二个字节。

LOAD_ATTR(namei)P

将 TOS 替换为 getattr(TOS, co_names[namei])

COMPARE_OP(opname)P

执行布尔运算操作。 操作名称可在 cmp_op[opname] 中找到。

IMPORT_NAME(namei)P

导入模块 co_names[namei]。 会弹出 TOS 和 TOS1 以提供 fromlistlevel 参数给 __import__()。 模块对象会被推入栈顶。 当前命名空间不受影响:对于一条标准 import 语句,会执行后续的 STORE_FAST 指令来修改命名空间。

IMPORT_FROM(namei)P

从在 TOS 内找到的模块中加载属性 co_names[namei]。 结果对象会被推入栈顶,以便由后续的 STORE_FAST 指令来保存。

JUMP_FORWARD(delta)P

将字节码计数器的值增加 delta

POP_JUMP_IF_TRUE(target)P

如果 TOS 为真值,则将字节码计数器的值设为 target。 TOS 会被弹出。

3.1 新版功能.

POP_JUMP_IF_FALSE(target)P

如果 TOS 为假值,则将字节码计数器的值设为 target。 TOS 会被弹出。

3.1 新版功能.

JUMP_IF_TRUE_OR_POP(target)P

如果 TOS 为真值,则将字节码计数器的值设为 target 并将 TOS 留在栈顶。 否则(如 TOS 为假值),TOS 会被弹出。

3.1 新版功能.

JUMP_IF_FALSE_OR_POP(target)P

如果 TOS 为假值,则将字节码计数器的值设为 target 并将 TOS 留在栈顶。 否则(如 TOS 为假值),TOS 会被弹出。

3.1 新版功能.

JUMP_ABSOLUTE(target)P

将字节码计数器的值设为 target

FOR_ITER(delta)P

TOS 是一个 iterator。 可调用它的 __next__() 方法。 如果产生了一个新值,则将其推入栈顶(将迭代器留在其下方)。 如果迭代器提示已耗尽则 TOS 会被弹出,并将字节码计数器的值增加 delta

LOAD_GLOBAL(namei)P

加载名称为 co_names[namei] 的全局对象推入栈顶。

SETUP_FINALLY(delta)P

将一个来自 try-finally 或 try-except 子句的 try 代码块推入代码块栈顶。 相对 finally 代码块或第一个 except 代码块 delta 个点数。

LOAD_FAST(var_num)P

将指向局部对象 co_varnames[var_num] 的引用推入栈顶。

STORE_FAST(var_num)P

将 TOS 存放到局部对象 co_varnames[var_num]

DELETE_FAST(var_num)P

移除局部对象 co_varnames[var_num]

LOAD_CLOSURE(i)P

将一个包含在单元的第 i 个空位中的对单元的引用推入栈顶并释放可用的存储空间。 如果 i 小于 co_cellvars 的长度则变量的名称为 co_cellvars[i]。 否则为 co_freevars[i - len(co_cellvars)]

LOAD_DEREF(i)P

加载包含在单元的第 i 个空位中的单元并释放可用的存储空间。 将一个对单元所包含对象的引用推入栈顶。

LOAD_CLASSDEREF(i)P

类似于 LOAD_DEREF 但在查询单元之前会首先检查局部对象字典。 这被用于加载类语句体中的自由变量。

3.4 新版功能.

STORE_DEREF(i)P

将 TOS 存放到包含在单元的第 i 个空位中的单元内并释放可用存储空间。

DELETE_DEREF(i)P

清空包含在单元的第 i 个空位中的单元并释放可用存储空间。 被用于 del 语句。

3.2 新版功能.

RAISE_VARARGS(argc)P

使用 raise 语句的 3 种形式之一引发异常,具体形式取决于 argc 的值:

  • 0: raise (重新引发之前的异常)

  • 1: raise TOS (在 TOS 上引发异常实例或类型)

  • 2: raise TOS1 from TOS (在 TOS1 上引发异常实例或类型并将 __cause__ 设为 TOS)

CALL_FUNCTION(argc)P

调用一个可调用对象并传入位置参数。 argc 指明位置参数的数量。 栈顶包含位置参数,其中最右边的参数在最顶端。 在参数之下是一个待调用的可调用对象。 CALL_FUNCTION 会从栈中弹出所有参数以及可调用对象,附带这些参数调用该可调用对象,并将可调用对象所返回的返回值推入栈顶。

在 3.6 版更改: 此操作码仅用于附带位置参数的调用。

CALL_FUNCTION_KW(argc)P

Calls a callable object with positional (if any) and keyword arguments. argc indicates the total number of positional and keyword arguments. The top element on the stack contains a tuple with the names of the keyword arguments, which must be strings. Below that are the values for the keyword arguments, in the order corresponding to the tuple. Below that are positional arguments, with the right-most parameter on top. Below the arguments is a callable object to call. CALL_FUNCTION_KW pops all arguments and the callable object off the stack, calls the callable object with those arguments, and pushes the return value returned by the callable object.

在 3.6 版更改: 关键字参数会被打包为一个元组而非字典,argc 指明参数的总数量。

CALL_FUNCTION_EX(flags)P

调用一个可调用对象并附带位置参数和关键字参数变量集合。 如果设置了 flags 的最低位,则栈顶包含一个由额外关键字参数组成的映射对象。 在该对象之下是一个包含位置参数的可迭代对象和一个待调用的可调用对象。 BUILD_MAP_UNPACK_WITH_CALLBUILD_TUPLE_UNPACK_WITH_CALL 可用于合并多个映射对象和包含参数的可迭代对象。 在该可调用对象被调用之前,映射对象和可迭代对象会被分别“解包”并将它们的内容分别作为关键字参数和位置参数传入。 CALL_FUNCTION_EX 会从栈中弹出所有参数以及可调用对象,附带这些参数调用该可调用对象,并将可调用对象所返回的返回值推入栈顶。

3.6 新版功能.

LOAD_METHOD(namei)P

从 TOS 对象加载一个名为 co_names[namei] 的方法。 TOS 将被弹出,并且当解释器可以直接调用未绑定方法时,方法和 TOS 会被推入栈顶。 TOS 将被用作 CALL_METHOD 的第一个参数 (self)。 否则,NULL 和方法会被推入栈顶(方法是绑定方法或其他对象)。

3.7 新版功能.

CALL_METHOD(argc)P

调用一个方法。 argc 是位置参数的数量。 不支持关键字参数。 此操作码被设计用于配合 LOAD_METHOD 使用。 位置参数放在栈顶。 在它们之下放在栈中的是由 LOAD_METHOD 所描述的两个条目。 它们会被全部弹出并将返回值推入栈顶。

3.7 新版功能.

MAKE_FUNCTION(argc)P

将一个新函数对象推入栈顶。 从底端到顶端,如果参数带有指定的旗标值则所使用的栈必须由这些值组成。

  • 0x01 一个默认值的元组,用于按位置排序的仅限位置形参以及位置或关键字形参

  • 0x02 一个仅限关键字形参的默认值的字典

  • 0x04 是一个标注字典

  • 0x08 一个包含用于自由变量的单元的元组,生成一个闭包

  • 与函数相关联的代码 (在 TOS1)

  • 函数的 qualified name (在 TOS)

BUILD_SLICE(argc)P

将一个切片对象推入栈顶。 argc 必须为 2 或 3。 如果为 2,则推入 slice(TOS1, TOS);如果为 3,则推入 slice(TOS2, TOS1, TOS)。 请参阅 slice() 内置函数了解详细信息。

EXTENDED_ARG(ext)P

为任意带有大到无法放入默认的单字节的参数的操作码添加前缀。 ext 存放一个附加字节作为参数中的高比特位。 对于每个操作码,最多允许三个 EXTENDED_ARG 前缀,构成两字节到三字节的参数。

FORMAT_VALUE(flags)P

用于实现格式化字面值字符串(f-字符串)。 从栈中弹出一个可选的 fmt_spec,然后是一个必须的 valueflags 的解读方式如下:

  • (flags & 0x03) == 0x00: value 按原样格式化。

  • (flags & 0x03) == 0x01: 在格式化 value 之前调用其 str()

  • (flags & 0x03) == 0x02: 在格式化 value 之前调用其 repr()

  • (flags & 0x03) == 0x03: 在格式化 value 之前调用其 ascii()

  • (flags & 0x04) == 0x04: 从栈中弹出 fmt_spec 并使用它,否则使用空的 fmt_spec

使用 PyObject_Format() 执行格式化。 结果会被推入栈顶。

3.6 新版功能.

HAVE_ARGUMENTP

这不是一个真正的操作码。 它用于标明使用参数和不使用参数的操作码 (分别为 < HAVE_ARGUMENT>= HAVE_ARGUMENT) 之间的分隔线。

在 3.6 版更改: 现在每条指令都带有参数,但操作码 < HAVE_ARGUMENT 会忽略它。 之前仅限操作码 >= HAVE_ARGUMENT 带有参数。

操作码集合P

提供这些集合用于字节码指令的自动内省:

dis.opnameP

操作名称的序列,可使用字节码来索引。

dis.opmapP

映射操作名称到字节码的字典

dis.cmp_opP

所有比较操作名称的序列。

dis.hasconstP

访问常量的字节码序列。

dis.hasfreeP

访问自由变量的字节码序列(请注意这里所说的‘自由’是指在当前作用域中被内部作用域所引用的名称,或在外部作用域中被此作用域所引用的名称。 它 并不 包括对全局或内置作用域的引用)。

dis.hasnameP

按名称访问属性的字节码序列。

dis.hasjrelP

具有相对跳转目标的字节码序列。

dis.hasjabsP

具有绝对跳转目标的字节码序列。

dis.haslocalP

访问局部变量的字节码序列。

dis.hascompareP

布尔运算的字节码序列。